Design Patterns

Software Engineering, Summer 2012
Andreas Zeller, Saarland University

Design Patterns

In this chapter we will examine typical usage scenarios of object-oriented
programming - the so called design patterns.

The name design pattern was coined by the architect Christopher
Alexander:

“Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice.”

A pattern is a template that can be used in many different situations.

Patterns in Architecture:
Window Place

Everybody loves window seats, bay windows, and big windows with low
sills and comfortable chairs drawn up to them

In every room where you spend any length of time during the day, make
at least one window into a “window place”

Window
place

Patterns in Software Design

In our case design patterns are

descriptions of communicating objects and classes, that have been
adapted to solve a design problem in a specific context.

The Elements of a Pattern

Patterns are usually combined into catalogues: manuals that contain
patterns for future reuse.

Every pattern can be described by at least four characteristics:

* Name
¢ Problem
e Solution

* Consequences

The Elements of a Pattern (2)

The name of the pattern is used to describe the design problem
and its solution in one or two words.

it enables us to

* design things on a higher level of abstraction

* use it under this name in the documentation

* speak of it

The problem describes when the pattern is used.
* it describes the problem and its context

* can describe certain design problems

* can contain certain operational conditions

The Elements of a Pattern (3)

The solution describes the parts the design consists of, their relations,
responsibilities and collaborations - in short, the structure and participants:

* not a description of a concrete design or an implementation

* but rather an abstract description of a design problem, and how a
general interaction of elements solves it

The consequences are results, benefits and drawbacks of a pattern:

* assessments of resource usage (memory usage, running time)

* influence on flexibility, extendiblility, and portability

Case Study: Text Editor Lexi

Let's consider the design of a "what you see is what you get" ("WYSIWYG")
text editor called Lexi.

Lexi is able to combine text and graphics in a multitude of possible layouts.

Let's examine some design patterns that can be used to solve problems in
Lexi and similar applications.

L= WL |
File FEdit Style. Symbol
Align feft 3
Center ‘ :
Align right
l¢dustify

lRoman
Boldtace

™~
Typewriter
Sans serif

| Gnu

{16511V T SO ——

the saternal representation of the TextView. The dawr et (hacgth and hara characters) we cueate Chazct
operation (which s not sown) sicply calls draw onthe that use the 16-bit JTS-encoded k14" fon.

The code that builds 3 TextView is suailar w e 7-7 Mixingtext and graphics

origial duw code, except ot fastead of QLIS e can put sy glyph inside 3 composite ghyph
furctions o draw the camciers, e bulld ObRCS i iy suaighttorivard ' exiend TaceView o dspl
that will Grx thewselves wheneves necesary. USRG hedded gaphies. iguse 6sbows » sexen duvp
objects soloes the zedusw problem becwse only oS e that akes the whitagace <hamctes o 3
abjects that Lic within the dcaged zegion wall 26 yigh by drwing guphial wpsesentatons of syl
4w . Toe propannes dos 10 uve o Ve e o, aod fonmlees. Pigue T,shovws the o
cod that decides what abjects to redaw-that code 5 coge that buildsthe vie
o the toalit (o this cxaple, o the Kngleraentation

of the Box dnaw operation). Tndeed, the glyph-based
plerentation of TextView is eve simpler than the
origial code because the progatuanes need oy declare
wiatol s -he dots vt need 0 specity daw

A Suncil is 3 glyph tat isplays 3 bitsap, 30 HRy
s 3 borizonval Line, s0d VGlus represents verti
Blick sgace. The constauctor pancaeters for Rule o

Because we built TextView with glypes, we o asily -
exctend 1 to 384 funcricaality that might otherwise be s et setoctileyy, K14
diffeult o ferplement. For exarple, Figue 4 shows
» scaeen dup of 3 version of TexeView that displays
EUC-encoded Japanese text. Adding this featuze 9 3 ppend(
textview such s the Athera Text Widget would requite new Character(o, al4)
» complete rewrite. Hexe we oy add twro Linesof code »
Figure ohows thechaage

Chanscter glypts take 30 optional second constzuctor
paramaete that speciies the font 1o use when drawing
For ASCII-encodid text we create Clanctezs that use i
the 8-bit ASCIL-encoded “a14" font; for JS-cocoded Figuses Mad\mdhxlvnwmldlsplrﬁhvams!uH

el

af
Bk M2BdRe e

Challenges

Document structure. How is the document stored internally?

Formatting. How does Lexi order text and graphics as lines and
polygons?

Support for multiple user interfaces. Lexi should be as
independent of concrete windowing systems as possible.

User actions.There should be a unified method of accessing Lexi's
functionality and undoing changes.

Each of these design problems (and their solutions) is illustrated by one
or multiple design patterns.

Displaying Structure -
Composite Pattern

A document is an arrangement of basic graphical elements like glyphs,
lines, polygons etc.

These are combined into structures - rows, columns, figures, and other
substructures.

Such hierarchically ordered information is usually stored by means of
recursive composition - simpler elements are combined into more complex
ones.

Elements in a Document

For each important element there is an individual object.

composite

(column)

Glyphs

We define an abstract superclass Glyph for all objects that can occur in a
document.

Draw(Window)
Intersects(Point)
Insert(Glyph, int)

Character Row
c char
Draw(Window w) - Draw(...) Draw(Window w) o -FXC____
Intersects(...) Intersects(Pointp) o--F-

Insert(Glyph g, int i) o

e
Intersects(Point p) @

i

i

i

Polygon

|
i

H)

H i

H i

H T i

| i i

! P

return true if point p | Draw(...) | I

intersects this character | | Intersects(....) | 1

1 i i

1 1 i

H i

1 i

I

i

i

insert g into children al
position i

w->DrawCharacter(c)

for all ¢ in children
if c->Intersects(p)
return true

for all ¢ in children
ensure c is positioned

correctly;
c->Draw(w)

Glyphs (2)

Each glyph knows

* how to draw itself (by means of the Draw() method).This abstract
method is implemented in concrete subclasses of Glyph.

* how much space it takes up (like in the Intersects() method).
* its children and parent (like in the Insert() method).

The class hierarchy of the Glyph class is an instance of the composite
pattern.

The Composite Pattern

Problem Use the composite pattern if
* you want to express a part-of-a-whole hierarchy

* the application ignores differences between composed and simple
objects

Structure

A

Operation()
Add(Component)
Remove(Component)
GetChild(int)

A

| | children

Client Composite %
Operation() Operation() O------1-----1 f°;f‘g§;;‘a§';‘r',ff”
Add(Component)
Remove(Component)
GetChild(int)

Participants

Component (Glyph)
- defines the interface for all objects (simple and composed)

- implements the default behavior for the common interface (where
applicable)

- defines the interface for accessing and managing of subcomponents
(children)

Leaf (e.g. rectangle, line, text)
- provides for basic objects; a leaf doesn't have any children

- defines common behavior of basic elements

Participants (2)

Composite (e.g. picture, column)
- defines common behavior of composed objects (those with children)
- stores subcomponents (children)

- implements methods for accessing children as per interface of
Component

Client (User)

- manages objects by means of the Component interface

Consequences

The composite pattern

* defines class hierarchies consisting of composed and basic
components

¢ simplifies the user: he can use basic and composed objects in the
same way; he doesn't (and shouldn't) know whether he is handling a
simple or complex object.

Consequences (2)

The composite pattern
¢ simplifies adding of new kinds of elements

* can generalize the design too much: for example, the fact that a certain
composed element has a fixed number of children, or only certain
kinds of children can only be checked at runtime (and not at compile
time). & This is a drawback!

Other known fields of application: expressions, instruction sequences

Encapsulating of Algorithms -
Strategy Pattern

Lexi has to wrap the text in rows and combine rows into columns - as
the user wishes it.

This is the task of the formatting algorithm.
Lexi must support multiple formatting algorithms e.g.

* afast,imprecise ("quick-and-dirty") algorithm for the WYSIWYG view
* aslow and precise one for printing

In accordance with the separation of interests, the formatting algorithm
must be independent of the document structure.

Formatting Algorithms

We define a separate class hierarchy for objects that encapsulate certain
formatting algorithms.The root of this hierarchy is the Compositor
abstract class with a general interface; every subclass implements a
concrete formatting algorithm.

Glyph

Insert(Glyph, int)

chilgren 4

Composition Vﬂposllor—> Compositor
Insert(Glyph, int) O composition | Compose()
f
|
1
i
i

SetComiusfrinn‘

Glyph:Insert(g, i) ‘ ‘
itor.Compose()
ArrayC i TeXCi i SimpleCompositor

Compose() Compose() Compose()

Formatting Algorithms (2)

Every Compositor traverses the document structure and possibly inserts
new (composed) Glyphs:

compositor—

composition
generated (=

This is an instance of the strategy pattern.

Strategy Pattern

Problem Use the strategy pattern if

* multiple connected classes differ only in behavior
¢ different variants of an algorithm are needed

* an algorithm uses data that shall be concealed from the user

Structure

Context %V Strategy

Contextlnterface() Algorithminterface()

A
1

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

AlgorithmInterface() Algorithminterface() Algorithminterface()

Participants

Strategy (Compositor)
- defines a common interface for all supported algorithms

ConcreteStrategy (SimpleCompositor, TeXCompositor,
ArrayCompositor)

- implements the algorithm as per Strategy interface
Context (Composition)

- is configured with a ConcreteStrategy object

- references a Strategy object

- can define an interface that makes data available to Strategy

Consequences

The strategy pattern

* makes conditional statements unnecessary (e.g. if simple-composition
then... else if tex.composition...)

* helps to identify the common functionality of all the algorithms
* enables the user to choose a strategy...
¢ ...but burdens him with a choice of strategy!

* can lead to a communication overhead: data has to be provided even
if the chosen strategy doesn't make use of it

Other fields of application: code optimization, memory allocation, routing
algorithms

User Actions -
Command Pattern

Lexi's functionality is accessible in multiple ways: you can manipulate the
WYSIWYG representation (enter text, move the cursor, select text), and
you can choose additional actions via menus, panels, and hotkeys.

We don't want to bind any action to a specific user interface because

* there may be multiple ways to initiate the same action (you can
navigate to the next page via a panel, a menu entry, and a keystroke)

* maybe we want to change the interface at some later time

User Actions (2)

To complicate things even more, we want to enable undoing and redoing of
multiple actions.

Additionally, we want to be able to record and play back macros
(instruction sequences).

User Actions (3)

Therefore we define a Command class hierarchy what encapsulates the
user actions.

Command
Execute()
PasteC d FontC: d SaveC d save QuitC d
Execute() o Execute() o Execute() o Execute() ¢
; ;
i i
buffer ' newFont ! 3 !
i
]]
! ! if (document is modified) {
! ! save->Execute()
+ + pop up a dialog box Yo o
_ that lets the user quit the application
paste buffer into make selected text name the
document appear in newFont and then save the
document under that
name

User Actions (4)

Specific glyphs can be bound to user actions; they are executed when the
glyph is activated.

Glyph

command
Menultem K >————» Command

Clicked() ® Execute()
i
i

'
command->Execute(); !
'

This is an instance of the command pattern.

Command Pattern

Problem Use the command pattern if you want to

* parameterize objects with the action to be performed

* trigger, enqueue, and execute instructions at different points in time
e support undoing of instructions

* log changes to be able to restore data after a crash

Structure

Client | | Invoker b—» Command

\ Execute()
1

1

:

'

1

1

1

i

'

i

! »| Receiver reécever | concreteCommand
1

1

| Action() Execute() ©
'

1

e »{ state

receiver->Action();

Participants

Command

- defines the interface to execute an action

ConcreteCommand (PasteCommand, OpenCommand)

- defines a coupling between a receiving object and an action

- implements Execute() by calling appropriate methods on the receiver
Client (User, Application)

- creates a ConcreteCommand object and sets a receiver

Participants (2)

Invoker (Caller, Menultem)
- ask the instruction to execute its action
Receiver (Document, Application)

- knows how the methods, that are coupled with an action, are to be
executed.Any class can be a receiver.

Consequences

The command pattern

* decouples the object that triggers an action from the object that
knows how to execute it

* implements Commands as first-class objects that can be handled and
extended like any other object

¢ allows to combine Commands from other Commands

* makes it easy to add new Commands because existing classes don't
have to be changed

Undoing Commands

With the help of a Command-Log we can easily implement command
undoing. It looks like this:

+past commands

present

Undoing Commands (2)

To undo the last command we call Unexecute() on the last command. This
means that each command has to store enough state data to be able to
undo itself.

Unexecute()

present

Undoing Commands (3)

After undoing, we move the "Present-Line" one command to the left. If
the user chooses to undo another command we end up in this state:

+—past future—
present

Undoing Commands (4)

To redo a command, we simply have to call Iixecute() on the current
command...

N Execute()
present

Undoing Commands (5)

...and move the "Present-Line" one command to the right, so the next
call to Execute() will redo the next command.

+past future—
present

This way the user can navigate back and forth in time depending on how
far he has to go to correct an error.

Macros

Lastly, let's consider an implementation of macros (instruction
sequences). We use the command pattern and create a MacroCommand
class that contains multiple command and can execute them successively:

Command

Execute()

A

commands

MacroCommand <>

Execute() ¢

for all ¢ in commands
c->Execute()

If we add an Unexecute() method to the MacroCommand class, then we
can undo macros like any other command.

In Summary

With Lexi we have familiarized ourselves with the following design
patterns:

* Composite for representation of the internal document structure
¢ Strategy for support of multiple formatting algorithms

* Command for undoing commands and creating macros

None of these patterns are limited to a concrete field of application; they
are also insufficient to solve every possible design problem.

In Summary (2)

In summary, design patterns offer:

A common design vocabulary. Design patterns offer a common
design vocabulary for software engineers for communicating,
documenting, and exchanging design alternatives.

Documentation and learning help.The most large object-
oriented systems use design patterns. Design patterns help to understand
such systems.

An extension of existing methods. Design patterns concentrate
the experience of experts - independently of the design method.

“The best designs will use many design patterns that dovetail and intertwine to
produce a greater whole.”

Case Study: Spreadsheet

A spreadsheet consists of m x n cells.

| 1 Cells are either empty or they have

Al A content.
Contents can be numbers, texts, or
10 1 formulas.
=Bl +A3

100

There are multiple contents for a
formula (that serve as operands)

Each formula has a result (a content)

Object Model

+get_value(): Content cell
+enter_data(s: string) 1
- content
0..1
Content 0..* operand
+get_value(): Content
+enter_data(s: string) 1 result
-notify()
Lll formula
| 1 1
Number Text Formula
-value: double -value: string
+enter_data(s:string) +enter_data(s:string) +get_value(): Content
— = +enter_data(s: string)
-refresh()

Relationships between Objects

al: Number +operand operand = | 82: Number

value = 1 value =10

A B b1: Formula

bt =atl +a2
result =
I I I b1'": Number + operand operand = a3: Number
=AlL+A2 value = 11 value = 100
b2: Formula
=Bl +A3
b2 =b1+a3
I 00 result =
b2": Number
value =111

State Chart

The method enter_data() of the Content class examines whether the
actual value has changed. If it has, every Formula that has this Content as
an operand is notified by means of the method notify().

constant value

[new value =

old value] enter_data()

notify()

changed value

Sequence Diagram

Example: Let the spreadsheet be filled out as just described; now the
value of cell Al is changed from | to 5.

[stoumper |

[smtumser | [aznumber |

[ouromus | [wronumser |

[ozromus | [oesmmser |

‘ value = 1 ‘

‘ value = 10 ‘ ‘ value = 100 ‘

EE RSN

‘ b2=b1+a3 ‘ ‘ value = 111 ‘

enter_data(’5")

refresh()

User

get_value()

5

get_value()

i v

enter_data("15")

refresh() |
et_value()
15

get_value()

100

enter_data("115")

Model-View-Controller

The Model-View-Controller pattern is one of the best known and most
common patterns in the architecture of interactive systems.

Example: Election Day

Let's examine an information system for elections that offers several
different views on prognoses and results.

cbu 48%
SPD 28%
The GREENS 10%
6%
The Left 4%
4%

Q

CDbU 48
SPD 28
The GREENS 10
6
The Left 4
4

observer

Problem

User interfaces are most frequently affected by changes.

* How can | represent the same information in different ways?

* How can | guarantee that changes in the dataset will be instantly
reflected in all views?

* How can | change the user interface? (possibly at runtime)

* How can | support multiple user interfaces without changing the core

of the application?

The Model-View-Controller pattern splits the application into three parts:

Solution

* The model is responsible for processing,

* The view takes care of output,

* The controller concerns itself with input

Model

-coreData

+attach(Observer)
+detach(Observer)
+notify()
+getData()
+service()

1

L
]

observers »

0.*

Observer

R

Structure

register

observers

notify observers

update the
display

+update()

JAN

View

+initialize(Model) 1
+makeController()

Controller

+activate()
+display()
+update()

+initialize(Model, View)
+handleEvent()

+update()

Structure (2)

Each model can register multiple observers (= views and controllers).

m: Model

spd =45
cdu=41..

pie: View bar: View

sheet: View c: Controller

As soon as changes occur in the model, all registered observers are notified,

and they update themselves accordingly.

Participants

The model encapsulates core data and functionality; it is independent of
any concrete output representation, or input behavior.

Model

responsible for

*Core functionality

*Registering dependent
views and controls

*Notifying registered
components on data
changes

collaboration with

View , Controller

Participants (2)

The view displays information to the user.A model can have multiple

views.

View

responsible for

* Showing information to
the user

¢ Possibly creating the
appropriate Control

* Reading data from
Model

collaboration with

Controller, Model

Participants (3)

The controller processes input and invokes the appropriate services of
the view or the model; every controller is assigned to a single view; a
model can have multiple controllers.

Controller collaboration with

responsible for View, Model

* Accepting user input

® Matching inputs to
service invocations
(displaying services of the
View, or services of the
Model)

Dynamic behavior

c: Controller ‘ m: Model ’ ‘ v: View ’
| | |
handleEvent() | | |
—_—)
service() i 1
1] notify()
update()
display()
getData()
update() || [T
getData()
| c oo
_________________ q

Consequences of the Model-
View-Controller Pattern

Benefits

* multiple views of the same system

* synchronous views

* attachable views and controllers
Drawbacks

* increased complexity

* strong coupling between Model and View

e Strong coupling between Model and Controllers (can be avoided by
means of the command pattern)

Known fields of application: GUI-libraries, Smalltalk, Microsoft Foundation
Classes

Anti-Patterns

If the following patterns occur in your software project, you're doing it wrong!

Anti-Patterns: Programming

The Blob. One object("blob") has the majority of the responsibilities,
while most of the others just store data or provide only primitive
services.

Solution: refactoring

The Golden Hammer.A favorite solution ("Golden Hammer") is
applied to every single problem:With a hammer, every problem looks like
a nail.

Solution: improve level of education

Copy-and-Paste Programming. Code is reused in multiple places
by being copied and adjusted. This causes a maintenance problem.

Solution: Black box reuse, identifying of common features.

Anti-Patterns: Programming (2)

Spaghetti Code. The code is mostly unstructured; it's neither
particularly modular nor object-oriented; control flow is obscure.

Solution: Prevent by designing first, and only then implementing. Existing
spaghetti code should be refactored.

Mushroom Management. Developers are kept away from users.

Solution: Improve contacts.

Anti-Patterns: Architecture

Vendor Lock-In. A system is dependent on a proprietary architecture
or data format.

Solution: Improve portability, introduce abstractions.

Design by Commiittee.The typical anti-pattern of standardizing
committees, that tend to satisfy every single participant, and create overly
complex and ambivalent designs ("A camel is a horse designed by a
committee").

Known examples: SQL and COBRA.

Solution: Improve group dynamics and meetings (teamwork)

Anti-Pattern: Architecture (2)

Reinvent the Wheel. Due to lack of knowledge about existing
products and solutions, the wheel gets reinvented over and over, which
leads to increased development costs and problems with deadlines.

Solution: Improve knowledge management.

Anti-Patterns: Management

Intellectual Violence. Someone who has mastered a new theory,
technique or buzzwords, uses his knowledge to intimidate others.

Solution: Ask for clarification!

Project Mismanagement. The manager of the project is unable to
make decisions.

Solution: Admit having the problem; set clear short-term goals.

Other Anti-Patterns

* Lava Flow (design changes frequently)
* BoatAnchor (a component has no apparent user)
* Dead End (a bought component that isn't supported any longer)

* Swiss Army Knife (a component that pretends to be able to do
everything)

